Vestnik MIRBIS. 2022; 2(30)': 45-51.
Вестник МИРБИС. 2022. № 2(30)'. С. 45-51.
Original article
DOI: 10.25634/MIRBIS.2022.2.4
Apple production forecasting in Afghaninstan using ARIMA model

Shah Mir Mowahed ${ }^{1,2}$, Abdul Naser Orfany ${ }^{1}$

1 Badghis University, Badghis Afghainstan.
2 sh.mowahed333@yahoo.com

Abstract

This article statistically examines the amount of apple production and its forecast in Afghanistan. Data from 1961 to 2019 have been used to obtain an ARIMA model that can significantly predict apple production in the coming years. In this paper, the amount of apple production in the current period is a function of the amount of apple production in the previous two periods, in which the amount of production in previous periods plays the role of an independent variable. Finally, the desired function was estimated as a first-order differential equation and based on that, the amount of apple production in ten years (2020-2029) was predicted.

Key words: apple production, ARIMA, forecasting.
For citation: Mowahed Sh. M. Apple production forecasting in Afghaninstan using ARIMA model. By Shah Mir Mowahed \& Abdul Naser Orfany. DOI: 10.25634/MIRBIS.2022.2.4. Vestnik MIRBIS. 2022; 2: 45-51.
JEL: Q13
Научная статья
УДК 338.431.7
Прогнозирование производства яблок в Афганистане с использованием модели ARIMA

Шах Мир Мовахед ${ }^{3,4}$, Абдул Насер Орфани ${ }^{3}$

```
3 Университет Бадгис, Бадгис, Афганистан
4 sh.mowahed333@yahoo.com
```

Аннотация. В данной статье статистически рассматривается объем производства яблок и его прогноз в Афганистане. Данные с 1961 по 2019 год использовались для получения модели ARIMA, которая может в значительной степени предсказать производство яблок в ближайшие годы. В этой статье объем производства яблок в текущем периоде является функцией объема производства яблок в предыдущие два периода, в которых объем производства в предыдущие периоды играет роль независимой переменной. Наконец, искомая функция была оценена как дифференциальное уравнение первого порядка, и на ее основе был предсказан объем производства яблок через десять лет (2020-2029 гг.).
Ключевые слова: производство яблок, ARIMA, прогнозирование.
Для цитирования: Mowahed Sh. M. Apple production forecasting in Afghaninstan using ARIMA model. By Shah Mir Mowahed \& Abdul Naser Orfany. DOI: 10.25634/MIRBIS.2022.2.4. Vestnik MIRBIS. 2022; 2: 45-51.
JEL: Q13

Introduction

Afghanistan is a landlocked country located
separated by the Hindu Kush mountain range ${ }^{6}$.
Horticulture has always been fundamental to at the crossroads of Central and South Asia. It the Afghan economy; it has played a central role in borders Pakistan to the east and south, Iran to the the past and continues to be very important for a west, Turkmenistan and Uzbekistan to the north, stable and prosperous society. Although only 12% of and Tajikistan and China to the northeast. The Afghanistan's total land area is arable and only about 652,864 square kilometer country is predominantly 6% is currently under cultivation, Afghanistan's mountainous, with plains in the north and southwest climatic conditions are extremely favorable for many

[^0][^1]tree crops, vegetable species, and seed production. colder areas of Afghanistan, such as Wardak, Logar, In the 1960s, Afghanistan was a world leader in raisin Kabul, Parwan, Ghazni, Paktya, Paktika, Badakhshan, production, and in the 1960s and 1970s, exports of and Bamiyan provinces. Apples flower in early high-value horticultural products accounted for 48% spring with fruit ripening in August to October, of Afghanistan's annual export earnings [Yousufi depending on varieties and locations. Apples are 2016]. In the 1970s, annual exports averaged mostly cross-pollinated, requiring growers to plant US $\$ 600$ million, of which 30% was dried fruit and two or three different varieties in the same orchard. 70% fresh fruit. It is estimated that revenues from Many varieties of apples are grown in Afghanistan, horticultural products were three to seven times with the most popular commercial varieties being higher than those from wheat. However, conflicts in Red Chief 101, Blushing Gold 102, Royal Gala 110, recent decades have led to widespread destruction Double Red Delicious 109, Michgla Modal Gala 7209, of agricultural infrastructure, especially orchards, Fuji 7237, Galaxy 7243, and Saturn 7235. Common and irrigation systems. Rebuilding the horticulture rootstocks of apples available in Afghanistan are B9, sector will allow Afghanistan to rise again and M7, M9, M26, MM106, and MM111 [Islamic Republic provide abundant employment opportunities and of Afghanistan... 2014].
livelihoods for up to 80% of the population. This will lead to a better economy and greater food security. The revitalization of horiculture should focus on high-quality products with increased production are over 7500 varieties of apples. Among the most The development of modern horticulture in recognized are Red Delicious, Golden Delicious, Fuji, Afghanistan with all its components and elements Jonagold, etc. The great ability to adapt to different will be a major challenge. Nevertheless, it has great natural conditions and high fruits quality ensured potential to contribute to the revitalization of the apple's important position in fruit production economy in Afghanistan [The future of food... 2017] [Lukač-Bulatović... 2019]

One of the most important and basic fruits produced all over the world is the apple, Apple (Malus domestica) accounts for 50% of the world's global demand for fruit, where the second position deciduous fruit tree production. China is the leading goes to apples. However, their supply is insufficient, apple-growing country which is producing about implying the lost revenues and exacerbating 41% of the world's apples; followed by the United nutritional food insecurity [Vasylieva \& James 2021]. States, India, and Turkey [Ntakyo 2013].

A rational and nutritious diet is a prerequisite
Afghanistan has favorable climatic conditions for for human health support. Agriculture is a core the production ofapples. Applesarestillanimportant provider of nutritional food. More and more fruit in the country despite unfavorable conditions consumers become aware that food must be safe like lack of storage facilities, packaging, and and provide sufficient calories and supply vitally transportation problems thus limiting the domestic important elements like protein, vitamins, and market. The more accessible areas and local markets minerals. Causes of these shifts can be linked to have heavy competition with imported apples from socio-demographic and economic drivers such as Iran and Pakistan; nevertheless, cultivation is still globalization, urbanization, promotion of a healthy widespread and mainly aimed at satisfying the small lifestyle, increases in disposable income, improved rural local market [Yousufi 2016].

Apple trees are temperate zone fruits that require 400-1,100 chilling hours (temperature below 45Fº during winter as a dormant period. Apple trees can grow in a wide range of soils from medium-textured a clay to sandy soils. However, the best soil for the in cultivation of apples is fertile and well-drained popular fruits were grapes and oranges, with 79 and loams soil. The required range of pH is between 5.8- 75 million tons of harvest (FAOStat, 2020). 7 (acidic to neutral soil) [Moety Salama 2021].

Commercial varieties of Apples are producedinthe degrees Celsius, apples are grown in 96 countries
for their domestic markets and export. Since 2000, and semi perishables products. The major markets apple production showed an accelerated increase are domestic, neighboring markets, and high-end by 51.1%, which is consistent with an increment markets in Europe, the Middle East, or more distant of the urban world population by 50.3%, while the Asian countries. Major fruits that have been exported total population grew at a much slower rate of 25.8% are grapes, apple, apricot, and pomegranate [ibid]. (WB, 2019).

Concerning the demand for fruits, it is expected that their world average daily consumption will grow from 204 to 242 g per capita by 2025 and 2050. The respective figures for the developing countries are 172 and 213 g of daily fruit intake in contrast to 336 and 388 g of consumed fruit per capita in the industrial countries for 2025 to 2050 [Kearney 2010].

WBJAERD, Vol. 2, No. 1 (1-68), January June, 202022source, almost $2 / 3$ of global apple production is organized in Asia (62.1\%), whereas the greatest producer could be labeled China with the production of over 39.2 million tons. Among the largest European producers could be marked Poland (almost 4 million tons), Turkey (3.6 million tons), Italy (2.4 million tons), and France (1.7 million tons).

Agriculture plays a key role in Afghans' livelihoods, provided income for 49% of all households, and is the potential source of income for approximately 40% of the total workforce. The important crops in Afghanistan, especially cash crops are apples, pomegranate, grapes, apricots, pear, peach, etc. The government of the Islamic Republic of Afghanistan (GoIRA) has recognized that agricultural development is a key priority for employment creation, improvement of livelihood, capital accumulation, and economic growth. World Bank and the government acknowledged that increases in agricultural production and market access for smallscale farmers should be a target for rural economic development and the national economy [Islamic Republic of Afghanistan... 2014].

Afghanistan has a strong advantage in the production of specific fruits and has strong potential for exporting and income generation, contributing \$1.4 billion to the national GDP, equivalent to 34% of agricultural GDP and 6.7% of national GDP. Currently, it is extending to 360 thousand ha, covering almost 14% of the total irrigated area and involving more than two million people. The country's different topographical and climatic conditions allow for a wide range of cash crops to be grown in all growing seasons of the year. Although there has been a positive trend in exports of Afghan fruit commodities including fresh, dried,

In the case of apple, the conventional farming system is a major problem and has been affected the quantity and quality of production and reduced efficiency of input resources for apple. This directly impacts rising unemployment, food insecurity, poverty level, and migration. Addressing poverty, apple farmers' livelihood is an important issue in the current situation of Afghanistan, particularly 9 provinces of the country in the area of 27 thousand ha is a zone of growing apple. Most farmers working in the area have 0.4ha on average, produced fruits for making income through distribution to domestic markets and exporting abroad [Verma 2014].

Model specification and methodology
Since the data used in this article are annual time series data, ARIMA model can be used to measure and predict apple production in Afghanistan. For more clarity of work methodology and estimation of model coefficients, different types of models are examined and one of them is selected as the optimal and practical model.

If it is assumed that the amount of apple production is not a function of the error components in the previous periods and is stationary, the following model is used to predict the amount of production.

$$
\begin{equation*}
Y_{t}=\phi_{0}+\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+\ldots+\phi_{p} Y_{t-p}+\varepsilon_{t} \tag{1.1}
\end{equation*}
$$

In Model 1.1, parameters such as
$\left(\phi_{1}, \phi_{2}, \phi_{p} \& \phi_{0}\right)$
are the model coefficients that must
be calculated. The variable
$\left(Y_{t}, Y_{t-1}, Y_{t-2}, \& Y_{t-p}\right)$
indicates the amount of production in different cycles and the expression $\left(\varepsilon_{1}\right)$ is the model error. The above equation is used when the model is defined as $\operatorname{ARIMA}(P, 0,0)$.

If the amount of production in the future is not a function of production in previous periods and is a function of the amount of errors of previous periods and the data is stationary, then the following model
is used to predict the amount of apple production in the future.
$Y_{t}=\mu+\varepsilon_{t}-\omega_{1} \varepsilon_{t-1}-\omega_{2} \varepsilon_{t-2}-\ldots-\omega_{q} \varepsilon_{t-p}$
In model 1.2, parameters such as
$\left(\omega_{1}, \omega_{2}, \omega_{q} \& \mu\right)$
are coefficients and constants of the equation constant that must be calculated, and variables
$\left(\varepsilon_{t}, \varepsilon_{t-1}, \varepsilon_{t-1}, \& \varepsilon_{t-q}\right)$
are components of error at different periods that affect the amount of output at time t. This equation is used when the mode model adopts ARIMA $(0,0, q)$. If the amount of production in the future is a function of the error components and the amount of production in previous periods, then Equations 1.1 and 1.2 are used simultaneously.
$Y_{t}=\phi_{0}+\mu+\sum_{i=1}^{p} \phi_{i} Y_{t-i}-\sum_{i=1}^{q} \omega_{i} \varepsilon_{t-i}+\varepsilon_{t}$
If the data used in the model is not stable, then the data difference needs to be taken as first-order or second-order. Therefore, if the first-order difference of the data is taken, the obtained model will be a first-order differential equation, and if the secondorder difference of the data is taken, the obtained model will be a quadratic differential equation. A kind of differential equation arises when the model is given as ARIMA (p, d, q).
$Y_{t}=\phi_{0}+\mu+\sum_{i=1}^{p} \phi_{i}\left(Y_{t-i}-Y_{t-(i+1)}\right)-\sum_{i=1}^{q} \omega_{i}\left(\varepsilon_{t-i}-\varepsilon_{t-(i+1)}\right)+\varepsilon$
(1.4)

Equation 1.4 shows the first-order differential model in which case $\operatorname{ARIMA}(p, 1, q)$ is considered.

Data sources and variables
The data used in this article is taken from the website (https://www.tilasto.com/en). In this paper, to predict the amount of apple production in the years 2020 to 2029, the ARIMA model is used and the results are extracted and interpreted through Python analytical software.

To obtain the ARIMA model, annual data on apple production in Afghanistan from 1961 to 2019 are considered and shown in the simple graph below.

Empirical results

In the previous paragraphs, the structure, types of models and methodology of the research were discussed. Now we are going to review and estimate the model of Arima used in this article and make the necessary forecast in terms of apple production in the years 2020 to 2019. To achieve this goal, Python software was used and the results were calculated in the table below.

Table 1.1. ARIMA model results

SARIMAX Results						
Dep. Variable: Model: Date: Time: Sample: Covariance Type:		APP No. Observations: ARIMA(1, 1, 0) Log Likelihood Sun, 06 Feb 2022 AIC 16:50:57 BIC 0 HQIC org			$\begin{gathered} 59 \\ -217.728 \\ 439.456 \\ 443.577 \\ 441.061 \end{gathered}$	
	coef	Std err	Z	$P>\|z\|$	[0.025	0.975]
ar. L1	0.5939	0.101	5.889	0.000	0.396	0.729
Sigma2	105.8981	8.116	13.048	0.000	89.991	121.80
Ljung-Box (L1) (Q): Prob (Q): Heteroscedasticity (H): Prob (H) (two-sided):			$\begin{gathered} 2.08 \\ 0.15 \\ 12.62 \\ 0.00 \end{gathered}$	Jarque-B Prob (JB) Skew: Kurtosis:	(JB):	$\begin{gathered} 235.38 \\ 0.00 \\ 2.19 \\ 11.84 \end{gathered}$
ADF - Statistic			2.0938			0.9987

In the last row of Table 1.1, the test ADF is performed. This test shows that the data used in this paper are not likely to be stationary. Because, the P -Value obtained in this test is equal to 0.9987 which can provide a sufficient reason for non stationarity of data. Therefore, Arima model was sestimated by the first-order differential equation in which the coefficient of variation of apple production in previous periods was calculated equal to 0.5939 , which is significant at the alpha level of $5 \%(P>|z|=0.000)$.

The confidence interval obtained in the model shows that the coefficient of difference of apple production in previous periods, which has a significant effect on the production of apples in the future, can not be more than 0.792 and less than 0.396 at the level of 95%. According to the calculations, ARIMA $(1,1,0)$ can be arranged as follows.
$Y_{t}^{\prime}=\phi_{0}+\phi_{1} Y_{t-1}^{\prime}+\phi_{2} Y_{t-2}^{\prime}+\ldots+\phi_{p} Y_{t-p}^{\prime}+\varepsilon_{t}$
$Y_{t}^{\prime}=0+0.5939 Y_{t-1}^{\prime}+\varepsilon_{t}, \quad Y_{t}^{\prime}=Y_{t}-Y_{t-1}, Y_{t-1}^{\prime}=Y_{t-1}-Y_{t-2}$
$\hat{Y}_{t}=1.5939 Y_{t-1}-0.5939 Y_{t-2}$

Equation 1.6 is a model that will be used to was obtained as a first-order differential equation predict the amount of apple production in the (eq 1.5). In such a model, the forecast of apple coming years. This model is derived from a first-order production in the desired year is a function of the differential equation. In this model, it is clear that amount of apple production in the previous two apple production this year $\left(Y_{t}\right)$ is a direct function of periods. So it can be said more clearly that the the amount of apple production last year $\left(Y_{t-1}\right)$. This amount of apple production in 2020, in addition to means that the amount of apple production in 2020 being affected by the amount of apple production is directly related to the amount of apple production in 2019, will also be negatively affected by the in 2019, and the coefficient of impact of the amount amount of apple production in 2018. Finally, the of apple production in 2019 on the amount of apple impact factor of apple production in 2018 on apple production in 2020 is equal to 1.5939 per unit. production in 2020 is equal to 0.5939 (eq 1.6).

Similarly, since the data used in this paper were Considering Equation 1.6, we calculate the not stationary and were converted to stationary amount of apple production in the years 2020 to data by taking the first-order difference, the model 2029 (table 1.2).

Table 1.2. Predicts the amount of apple production in the years 2020 to 2029

Years	Model $\left[\hat{Y}_{t}=1.5939 Y_{t-1}-0.5939 Y_{t-2}\right]$	Forecasting APP (Tones)
2020	$\hat{Y}_{t}=1.5939(2019=250.32)-0.5939(2018=217.19)$	270.00
2021	$\hat{Y}_{t}=1.5939(2020=270.00)-0.5939(2019=250.32)$	281.68
2022	$\hat{Y}_{t}=1.5939(2021=281.68)-0.5939(2020=270.00)$	288.62
2023	$\hat{Y}_{t}=1.5939(2022=288.62)-0.5939(2021=281.68)$	292.74
2024	$\hat{Y}_{t}=1.5939(2023=292.74)-0.5939(2022=288.62)$	295.19
2025	$\hat{Y}_{t}=1.5939(2024=295.19)-0.5939(2023=292.74)$	296.64
2026	$\hat{Y}_{t}=1.5939(2025=296.64)-0.5939(2024=295.19)$	297.51
2027	$\hat{Y}_{t}=1.5939(2026=297.51)-0.5939(2025=296.64)$	298.02
2028	$\hat{Y}_{t}=1.5939(2027=298.02)-0.5939(2026=297.51)$	298.33
2029	$\hat{Y}_{t}=1.5939(2028=298.33)-0.5939(2027=298.02)$	298.51

Figure 1.1. Dynamics of apple production (1961-2019) and its forecast (2020-2029)
Apple production in 2020,2021,2022 and 2029 are in Afghanistan is increasing and each year compared predicted to be $33,44,44$ and 77 tons, respectively, to the previous year, the amount is more and more. using the ARIMA ($1,1,0$) model obtained. Estimates If 2019 is considered as the base year, in 2028 and of the amount of apple production during the years 2029, the growth rate of apple production will be 2020 to 2029 show that the trend of apple production 19.17% and 19.25%, respectively (table 1.2).

Apple production in Afghanistan before 2005 in general and apples in particular in Afghanistan does not look very impressive. Because, before the were discussed, and then the research literature on year 2000, the people of this country were suffering the production and estimation of apple production from foreign and domestic civil wars, which not only was studied.
destroyed the agricultural sector, but also destroyed The model used in this study was ARIMA (1, 1, major parts of the real economy. But since 2005, 0), and the results show that the amount of apple apple production in Afghanistan has increased production in the previous two periods significantly dramatically and dramatically. The reason for the affects the amount of apple production in the next increase in apple production in this period could be period. Apple production in 10 years (2020-2029) the reduction of the war in the country, investment was estimated using the first-order differential in the agricultural sector, familiarity with new equation, and calculations show that the growth horticultural models, use of agricultural technology, rate of apple production in Afghanistan has been taming of barren lands, etc. Similarly, the forecast increasing in recent years, but growing slowly. The shows that apple production is increasing, but in results show that the amount of apple production recent years the growth rate of apple production in the current period is positively affected by the seems to be slower (fig 1.1).

Conclusion

 amount of apple production in a previous period production and its forecast in Afghanistan. At first, the amount of apple production in the previous two the weather conditions and fruit gardening facilities periods $\left(Y_{t-1}\right)$.
References

1. Islamic Republic of Afghanistan... 2014 - Islamic Republic of Afghanistan Agriculture Sector Review: Revitalizing Agriculture for Economic Growth, Job creation and food security : Report No: AUS 9779, Washington D.C. World Bank, 2014. https://openknowledge.worldbank.org/handle/10986/21733. License: CC BY 3.0 IGO.
2. Kearney 2010 - Kearney J. Food consumption trends and drivers. DOI 10.1098/rstb.2010.0149. Philosophical Transactions of the Royal Society: Biological Sciences. 2010; 365:2793-2807.
3. Lukač-Bulatović 2019 - Lukač-Bulatović M. Analysing and forecasting trends in the apple production in Serbia, Journal on Processing and Energy in Agriculture. By Mirjana Lukač-Bulatović, Emilija B Nikolic-Djoric, Katarina Đurić. DOI 10.5937/jpea1901027L. Journal on Processing and Energy in Agriculture. 2019; 23(2):27-31.
4. Moety Salama 2021 - Moety Salama, Abdel. Temperate Fruit Trees under Climate Change: Challenges for Dormancy and Chilling Requirements in Warm Winter Regions. DOI 10.3390/horticulturae7040086. Horticulturae. 2021; 7:1-18.
5. Ntakyo 2013 - Ntakyo P. R. Socio-Economic Factors Affecting Apple Production In Southwestern Uganda. By P. R. Ntakyo, J. Mugisha, and G. Elepu. African Crop Science Journal. 2013; 21(4):311-321. ISSN 1021-9730.
6. The future of food ... 2017 - The future of food and agriculture Trends and challenges. Food and Agriculture Organization of the United Nations Rome, 2017. 180 p. ISBN 978-92-5-109551-5.
7. Vasylieva \& James 2021 - Vasylieva, Natalia \& James, Harvey. (2021). Production and trade patterns in the world apple market. DOI 10.21511/im.17(1).2021.02. Innovative Marketing Journal. 2021; 17(1):16-25.
8. Verma 2014 - Verma M. K. Apple Production Technology. In book: Training manual on teaching of post-graduate courses in horticulture (Fruit Science) (pp. 241-248). Publisher: Post Graduate School, Indian Agricultural Research Institute, 2014. New Delhi-110012, India. ISBN 978-93-83168-09-5.
9. Yousufi 2016-Yousufi, Abdullah. (2016) Horticulture in Afghanistan: Challenges and Opportunities. DOI 10.11178/jdsa.11.36. Journal of Developments in Sustainable Agriculture. 2016; 11(1):36-42.

Information about the authors:
Mowahed Shah Mir - Department of National Economics; Orfany Abdul Naser - Department of Horticulture.
Place of work of the authors: Badghis University, Badghis province, Afghanistan.
Информация об авторах:
Мовахед Шах Мир - департамент национальной экономики; Орфани Абдул Насер - департамент садоводства.
Место работы авторов: Университет Бадгис, провинция Бадгис, Афганистан.
The article was submitted 03/21/2022; approved after reviewing 04/07/2021; accepted for publication 05/16/2022

Статья поступила в редакцию 21.03.2022; одобрена после рецензирования 07.04.2021; принята к публикации 16.05.2022.

[^0]: © Mowahed Sh. M., Orfany A. N., 2022
 Vestnik MIRBIS, 2022, no. 2 (30), p. 45-51.

[^1]: 6 Landlocked Countries In Asia. WorldAtlas.com : [website]. Available at: https://www.worldatlas.com/articles/which-are-the-landlocked-countries-in-asia.html (accessed 12/16/2021).

